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Abstract

In aerospace computational uid dynamics calculations, high aspect ratio, or stretched,

triangulations are often used to adequately resolve the features of a viscous ow around

bodies. In this paper, we explore alternatives to the Delaunay triangulation which can be

used to generate high aspect ratio triangulations of point sets. The method is based on a

variation of the lifting map concept which derives Delaunay triangulations from convex

hull calculations.

1 Introduction

In computational uid dynamics (CFD) applications, the problem domain must be discretized

into meshes (or grids) over which the governing equations of uid dynamics are solved. In

general, calculations which take the viscosity of uids into account result in very high solution

gradients normal to surfaces, and very small solution gradients tangent to surfaces, with the

e�ect diminishing with distance from the surface. E�ective use of the computational e�ort

required to solve the governing ow equations results when a grid contains high aspect ratio,

surface-conforming elements near bodies and low aspect ratio elements at a distance. This

study investigates more robust alternatives to the primarily heuristic methods currently used

to generate high aspect ratio triangulations.

2 Approaches in Use

Heuristic methods have been primarily used to generate high aspect ratio elements in un-

structured grids. These approaches either combine structured grid generation methodologies

to generate points followed by a triangulation phase to create the grid, or generate the points

and create the triangulation in tandem. Delaunay triangulation is very often unsuitable for

the �rst approach; examples of the inadequacies are described in [1, 2]. Alternative trian-

gulations have been used, such as the min-max triangulation, mainly because they appear

to generate grids better suited to CFD applications. Locally optimal, rather than globally

optimal, methods are used to generate such grids, primarily due to the cost involved. An-

other purely heuristic approach is the advancing front technique [3, 4]. This technique uses

a greedy method to generate points.
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Figure 1: A distance function resulting in an invalid triangulation

A heuristic method to generate stretched triangulations was used by Mavriplis [5]. He

recast the n-dimensional planar triangulation problem to an (n+1)-dimensional surface tri-

angulation problem. A control surface was introduced which was related to the aspect ratio,

or amount of stretch, desired. Points from the plane were projected to the control surface,

and Delaunay triangulation was performed on the surface. Since the method was intimately

tied to the point generation method, an assumption of local planarity was valid.

3 A Robust Alternative

A key concept behind the Delaunay triangulation is the empty circumcircle criteria. The

method used by Mavriplis essentially modi�ed the concept of distance on the plane used

to de�ne the empty circumcircle. By assuming local planarity, circumcircles on the control

surface project to circumellipses on the plane. This can be viewed as related to the use of

a convex distance function, here an ellipse, to generate a triangulation, similar to the idea

of convex distance functions for Voronoi diagrams as described by Chew and Drysdale [6].

The technique used by Mavriplis remains heuristic, however, because of the local planarity

assumption. To be truly general, the control surface should be independent of the point

generation method, and a general surface triangulation should be employed. A sparse dis-

tribution of points projected to a control surface with rapidly changing surface gradients

could result in an invalid triangulation; Figure 1 illustrates how a rapidly changing distance

function in combination with a sparse set of points could produce overlapping triangles. To

generalize the convex distance function formulation to be applicable to the problem at hand,

a distance function must vary throughout the plane. Su�cient care must be taken to insure

that invalid triangulations could not arise.

To develop an approach which yields high aspect ratio triangulations that is more robust

than the ad hoc methods currently in use, we turn to the formulation that relates Delaunay

triangulation to convex hulls. A point set lifted onto a paraboloid via orthogonal projection

generates a convex hull; when the lower hull is projected back to the plane, this results

in a Delaunay triangulation [7]. It is possible to construct other convex bodies in which

the convex hull of a point set lifted onto the body similarly produces a triangulation; these

triangulations then show a \bias" corresponding to the predominant circumshapes.

First consider the equations of a paraboloid and an arbitrary plane which cuts through

the paraboloid. From
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z = ax + by + c

z = x2 + y2

we get the result
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In other words, by eliminating z we get an expression in x and y which is the equation

for a circle, or the projection of the intersection of the plane in 3-space and the paraboloid

on the z = 0 or 2D plane.

Now, consider a convex object f(x; y). To determine the circumshapes on the plane

centered at (x0; y0) which correspond to the intersection of a plane z = ax + by + c and

the convex object f(x; y), we pose the problem as follows: For any point x0 and y0 on the

2D plane, we �nd the plane in 3-space which is tangent to the convex body at f(x0; y0).

The intersection of the tangent plane and convex object is simply the point f(x0; y0), which

projects to the point (x0; y0). To \see" the circumshapes centered about this point, the

tangent plane must be \pushed" into the convex body by an amount � to get more than the

trivial intersection.

So, the circumshapes about a point (x0; y0) are de�ned by:

f(x; y)� (ax+ by + c) = 0

a =
@f

@x
jx=x0

b =
@f

@y
jy=y0

c = �ax0 � by0 + f(x0; y0) + �

The discussion section describes the results of tests run for di�erent functions f(x; y).

4 An alternative approach

Another way in which the triangulation/convex hull approach might be modi�ed is by chang-

ing the projection method used to lift the points to the body. Perspective projection along

the line connecting the projection point (0; 0; zproj), (x; y; 0), and a convex body is used in-

stead of orthogonal projection. For this section, we use the paraboloid f(x; y) = x2 + y2,

although other convex bodies could be used, as in the previous section. With this method, it

is possible under certain conditions for projected points to \miss" the paraboloid entirely, so

this scenario is to be avoided by insuring that zproj is su�ciently distant. The circumshapes

are de�ned by:
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c = x20 � y20 + �

The method used to determine circumshapes on the 2D plane is similar to that used in the

previous section; here, the actual values for the partial derivatives are shown since f(x; y) is

known in this case. A sketch of the derivation of the circumshape function is given in section

A.

An alternative approach is to de�ne a new surface which is based on the perspective

projection. Orthogonal projection to this new surface is used so the original (x; y) points

are unchanged, but the corresponding z value obtained is what would have resulted from

true perspective projection from a point (0; 0; zproj) through (x; y; 0) to a paraboloid (in this

case, zproj < 0). The equation of such a surface follows; a sketch of its derivation is given in

section B.
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5 Discussion of Figures

In this section we discuss several examples of the variation in circumshape for triangulations

derived from either convex body alternatives to the paraboloid, or alternative projection.

The circumshapes display the various biases of the functions which may be exploited in the

triangulations.

Figure 4 shows a set of 200 points randomly selected from a uniform distribution within

the box with corners at (�5;�5), (5;�5), (�5; 5), and (5; 5). Each subsequent example uses

this test data. It may have been scaled or shifted for di�erent test cases, but any modi�cation

to the test set, along with the reason for it, will be indicated during discussion.

The circumshapes derived from both orthogonal and perspective projection examples are

shown for regularly spaced (x0; y0) for each f(x; y), except as noted in Figure 12. These in

general do not correspond to a convex hull, but do illustrate the predominant circumshapes in

a particular portion of the 2D plane which result from planes slicing through the convex sur-

face. Since the functions used are continuous, one can infer smoothly changing circumshapes.

The triangulation results in Figures 5-12 are obtained by lifting the test set to the test

body f(x; y) using orthogonal projection, �nding the lower convex hull with respect to the

2D plane, and projecting these results back to the 2D plane. The triangulation results in

Figure 13 are obtained by lifting the test set to a paraboloid using perspective projection,

�nding the lower convex hull with respect to the projection point (0; 0; zproj), and projecting

these results back (via perspective projection) to the 2D plane.
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Figure 5 illustrates results for a paraboloid, f(x; y) = x2+ y2. This result corresponds to

Delaunay triangulation.

Figure 6 illustrates results for f(x; y) = x2+10y2; circumshapes are plotted for � = 0:05.

A little manipulation of the equations show that the circumshapes about a point (x0; y0) are

(x � x0)
2

10
+ (y � y0)

2 = �

which describes ellipses, with centers depending on (x0; y0), and identical eccentricity and

orientation throughout the plane.

Figure 7 illustrates results for f(x; y) = x2 + y4; circumshapes are plotted for � = 0:02.

The shapes are constant along one coordinate direction.

Figure 8 illustrates results for f(x; y) = x4 + y4; circumshapes are plotted for � = 0:02.

Circumcircles predominate along x = y and x = �y, with increasing elongation towards the

coordinate axes.

Figure 9 illustrates results for f(x; y) = x3 + y3; circumshapes are plotted for � = 0:09.

The predominant circumshape orientation changes over the plane. Because this body is not

convex over the entire plane, the data was translated to the upper right quadrant where the

portion of the body to which points are lifted would be convex.

Figure 10 illustrates results for f(x; y) = x1:5 + y1:5; circumshapes are plotted for � =

0:015. As in the previous example, the data was translated to the upper right quadrant.

Figure 11 illustrates results for f(x; y) = x1:5 + 10y1:5; circumshapes are plotted for

� = 0:015. The data was translated to the upper right quadrant. Although the shapes

appear constant along one coordinate direction, compression of the circumshapes occurs

from row to row.

Figure 12 illustrates results for f(x; y) = 1

4

�
100p
x2+y2

�
q
�400 + 10000

x2+y2

�2
, a surface de-

rived from perspective projection considerations with zproj = �100. The circumshapes

shown are derived from the convex hull corresponding to the triangulation; a sampling of

circumshapes are shown for clarity. Because this convex body was not de�ned for all points

on the 2D plane, the data set was scaled by a factor of 2

3
in both coordinate directions. Note

that the alternative approach results in circumshapes similar in orientation and eccentricity

to the true perspective approach which follows.

Figure 13 illustrates results for perspective projection; zproj = �100, � = 0:05. Because

the projection from zproj = �100, was not de�ned for all points, the data set was scaled

by a factor of 2

3
in both coordinate directions. The circumshapes exhibit radial variation in

orientation, with eccentricity increasing for increasing distance from the origin.

6 Conclusion

We have demonstrated how a modi�cation of the lifting map formulation which derives a

triangulation from the convex hull of a convex body can be used to produce alternatives to

the Delaunay triangulation. By suitable construction of the convex body, triangulations can

then be \biased" to produce stretched or high aspect ratio triangulations. The appeal of this
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method is that a valid triangulation of the point set will always exist for a corresponding

convex body, and the method can be generalized to higher dimensions.
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(0,0,z )p

(x,y,0)

(x’,y’,z’)(0,0,z )p

(x’,y’,z’)

(x,y,0)

Figure 2: The relationship between points on the plane and on the paraboloid (in cross-section).

(a) zp > 0; (b) zp < 0

A Derivation of Perspective Projection Circumshape Func-

tion

Given the equations for a paraboloid, z0 = x02+y02, a plane, z0 = ax0+by0+c, and a projection

point (0; 0; zp), the circumshapes on the 2D plane can be determined in the following manner.

Using similar triangles from the diagrams in Figure 2, the following relationships hold:

Figure 2a:
zp

z0
=

x

x� x0
=

y

y � y0

Figure 2b:
�zp + z0

z0
=

x0

x0 � x
=

y0

y0 � y

Both cases yield:

z0 =
zp(x� x0)

x

x0 = x(1�
z0

zp
)

y0 = y(1�
z0

zp
)
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Substituting the expressions for x0 and y0 in the plane equation yields:

z0 = ax

 
1�

z0

zp

!
+ by

 
1�

z0

zp

!
+ c

or

z0 = zp
ax+ by + c

ax+ by + zp

for ax + by + zp 6= 0. Substituting the expressions for x0 and y0 in the paraboloid equation

yields:

z0 = x2(1�
z0

zp
)2 + y2(1�

z0

zp
)2

z0 = (x2 + y2)(1�
z0

zp
)2

z0 = (x2 + y2)(1� 2
z0

zp
+

z02

z2
p

)

z0z2
p
= (x2 + y2)(z02 � 2z0zp + z2

p
)

rearranging gives

z02(x2 + y2)� z0(2zp(x
2 + y2) + z2

p
) + z2

p
(x2 + y2) = 0

Substitute the equation for z0 from the plane equation into the last result:

 
zp

ax+ by + c

ax+ by + zp

!2
(x2 + y2)� zp

ax+ by + c

ax+ by + zp

�
(2zp(x

2 + y2) + z2
p

�
+ z2

p
(x2 + y2) = 0

Expanding and rearranging gives:

(x2 + y2)(1�
c

zp
)2 � (ax+ by + c)(

ax

zp
+

by

zp
+ 1) = 0
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(x’,x’ )2

p(0,z )

(x,0)

Figure 3: The 2D problem of determining x0.

B Derivation of Body from Perspective Projection

The goal is to derive an expression for a body f(x; y) where orthogonal projection is used

with a z value which would have been obtained from perspective projection.

The symmetry of the paraboloid about the z-axis can be exploited to derive an expression

which performs as required.

First consider the 2D perspective projection problem shown in Figure 3, where zproj < 0.

The goal is to �nd an expression f(x) = x0 such that g(x0) = x02, or g(f(x)) = x02. From

consideration of similar triangles:

�zproj
x

= �
x02 � zproj

x0

Rearranging in terms of x0 gives:

x02 +
zproj

x
x0 � zproj = 0

Solving for x0 yields f(x):

f(x) = x0 =
1

2

2
4�zproj

x
�

s
z2
proj

x2
+ 4zproj

3
5

and g(f(x)) is

g(f(x)) = x02 =
1

4

2
4�zproj

x
�

s
z2
proj

x2
+ 4zproj

3
5
2

Because the paraboloid is circularly symmetric about the z-axis, it may be observed that

by looking at planes through the z-axis, the 3D problem is identical to the 2D problem.
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The goal is to �nd an expression h(x; y) = z0. In the 2D problem, x is the distance from

the z-axis. For a 3D formulation, �rst �nd the distance to the point under consideration on

the 2D plane, which is
p
x2 + y2. Then use this new \x0" in the 2D formulation (which is

also equivalent to decomposing this value into its x0 and y0 components and calculating the

paraboloid value). This substitution yields

z0 =
1

4

0
@� zprojp

x2 + y2
�

s
4zproj +

z2
proj

x2 + y2

1
A
2

In this case, the negative square root produces the correct behavior for the function, i.e.,

a convex object.
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Figure 4: Test data used for all examples.
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Figure 5a: Circumshapes derived from paraboloid x2 + y2

Figure 5b: Triangulation derived from paraboloid x2 + y2
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Figure 6a: Circumshapes derived from x2 + 10y2, � = 0:05

Figure 6b: Triangulation derived from x2 + 10y2
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Figure 7a: Circumshapes derived from x2 + y4, � = 0:02

Figure 7b: Triangulation derived from x2 + y4
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Figure 8a: Circumshapes derived from x4 + y4, � = 0:02

Figure 8b: Triangulation derived from x4 + y4
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Figure 9a: Circumshapes derived from x3 + y3, � = 0:09

Figure 9b: Triangulation derived from x3 + y3
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Figure 10a: Circumshapes derived from x1:5 + y1:5, � = 0:015

Figure 10b: Triangulation derived from x1:5 + y1:5
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Figure 11a: Circumshapes derived from x1:5 + 10y1:5, � = 0:015

Figure 11b: Triangulation derived from x1:5 + 10y1:5

18



-4 -2 2 4

-3

-2

-1

1

2

3

Figure 12a: Circumshapes derived from triangulation in Figure 12b

Figure 12b: Triangulation derived from z = 1
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Figure 13a: Circumshapes predicted from perspective projection, zproj = �100, � = 0:05

Figure 13b: Triangulation derived from perspective projection, zproj = �100
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